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Fermion Nodes 
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The knowledge of the nodes of the many-fermion wave function would enable 
exact calculation of the properties of fermion systems by Monte Carlo methods. 
It is proved that fermion nodal regions have a tiling property, there is only one 
distinct kind of nodal region. All others are related to it by permutational 
symmetry. For some free particle systems, it is shown that there are only two 
nodal regions. An explicit form for the nodes of the many-fermion density 
matrix would enable exact simulations to be carried out at finite temperature. 
In the high-temperature limit, its nodes are related to Voronoi polyhedra. Two- 
dimensional cross sections of nodes are depicted. General computable families of 
fermion wave functions and density matrices are discussed. 

KEY WORDS: Nodes; fermions; density matrix; simulations of quantum 
systems. 

1. I N T R O D U C T I O N  

In this pape r  I invest igate general  features of the nodes  of m a n y - b o d y  
fermion wave funct ions and  densi ty  matrices.  There  seems to be 
surpr is ingly little publ i shed  abou t  this subject  even though  the one- 
d imens iona l  case is often presented  in i n t roduc to ry  t ex tbooks  on qua n tum 
mechanics.  This p rob lem is in teres t ing because of  its re la t ionship  to the 
ca lcula t ion  of the t h e r m o d y n a m i c  proper t ies  of many- fe rmion  systems, one 
of the ou t s t and ing  p rob lems  in compu ta t i ona l  physics. 

A r igorous  and  pract ica l  s imula t ion  m e t h o d  for many- fe rmion  systems 
is not  yet known.  The p rob l em can be s ta ted as follows. Does  there exist 
a me thod  to calculate  proper t ies  (say the energy)  of a fermion system to a 
given (sufficiently small )  accuracy  in a compute r  t ime which grows as a 
power  of  the number  of fermions? Na tu ra l ly ,  no uncont ro l led  a p p r o x i m a -  
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tions are allowed, so that error bounds represent true errors on the exact 
energy. Ideally one would like to perform such a calculation at any 
temperature or for any excitation level. In the high-temperature limit, 
quantum systems reduce to classical ones, and the only methods which can 
determine properties of classical many-body systems are stochastic: 
molecular dynamics and Monte Carlo methods. By extension, one expects 
the corresponding quantum methods at a lower temperature will be 
stochastic. 

The first approach that I consider here, Green's function Monte 
Carlo (2'3'a6) (also known as diffusion Monte Carlo or projector Monte 
Carlo), takes an initial trial function and projects out the ground state as 

~b = lim e x p ( -  t ~ )  gt T (1) 
t ~ o O  

where ~ is the Hamiltonian. The thermal evolution operator exp(- t .9~)  
can be interpreted as a diffusion and branching process, if the wave 
function is interpreted as a probability density, but unless one is in the 
absolute (boson) ground state, the wave function changes sign and thus 
cannot be treated directly as a probability density. This is the origin of the 
sign problem in the simulation of quantum systems. Naive methods of 
solving the sign problem take an exponential amount of computer time to 
achieve high accuracy, (21~ exponential in the number of degrees of freedom. 
While practical methods have been found for specific small systems, simula- 
tions of large systems will always be necessary for studying physical 
systems which contain several length scales, such as those undergoing 
phase transitions. 

A useful and powerful approximation is the fixed-node approxima- 
tion, (16) where one assumes knowledge of where the exact wave function is 
positive and negative. Let ~PT(R) be a trial wave function. Then one 
assumes that 

~b(R) = 0 if ~T(R) = 0 (2) 

Then the diffusion equation implicit in Eq. (1) is solved by simulating the 
diffusion process within the domains bounded by the assumed fixed nodes. 
Condition (2) is satisfied if the random walks are constructed not to cross 
the nodes of the trial wave function. 

This fixed-node method has many desirable features. If the nodes are 
correct, then the method is exact. The algorithm only needs to know when 
the system crosses a node; nothing else about the wave function is required. 
The method yields the best possible upper bound to the energy consistent 
with the assumed nodes/4) This implies that the energy is second order in 
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the displacement of the assumed nodes from the exact nodes. It has been 
found that the upper bound produced by this approximation is often 
excellent. (3'6) The method calculates properties in a polynomial time since 
for large systems, the computer time will be dominated by the time taken 
to determine whether the system has crossed a node. Typically, one chooses 
nodes from a Slater determinant. Finding the numerical value of a general 
determinant requires order N 3 operations. Thus, knowledge of the nodes 
implies the ability to simulate the thermodynamic properties of a fermion 
system in polynomial time. 

As good as the fixed-node method is, it does not satisfy our criteria for 
solving the fermion problem unless one knows that the assumed nodes are 
exact (or sufficiently close to exact, since one can perturb around them 
with the release-node method(6)). This is our principal motivation for 
summarizing the little that is known about fermion nodes. I will first 
describe the ground-state situation and show some nodes of these systems. 
Then I will make the generalization to nonzero temperature. I will then 
prove that some noninteracting fermion systems have maximally connected 
nodal cells. I will discuss general procedures for constructing accurate and 
computable antisymmetric functions. These results are new and may be of 
some help in solving the many-fermion problem. 

2. THE NODES OF THE G R O U N D  STATE 

For simplicity I will always discuss a system of N electrons in the 
absence of a magnetic field. They could just as easily be N 3He atoms. 
Nucleons with their spin and momentum-dependent forces are significantly 
more complicated. I will only discuss the continuum, time-independent 
Schr6dinger equation: 

.Zr -- -ZV~r + V(R) r -- Eor (3) 

where R =  {rl, r2,..., rN} is the set of electron coordinates, V(R) is the 
total potential energy, and 2=h2/2m. In this paper I am almost always 
concerned with general potentials, particularly the Coulomb interaction 
between charged particles, and I will usually assume it is the sum of one- 
body and two-body potentials, 

N 
V ( R )  = 2 vl(ri) q- 2 v2(ri, rj) (4) 

i= i i< j  

Frequently I will assume that the potential is finite almost everywhere. 
Replacing the Coulomb potential with a finite one for very small 
intercharge separations will not change the type of nodal properties to be 
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discussed. By free particles, I mean systems for which the potential 
vanishes. 

Particles obeying Fermi statistics are antisymmetric with respect to the 
exchange of both spin and spatial coordinates: 

O(PR, PX)  = ( - 1 )e r S)  (5) 

where the S =  (ol,..., aN) are discrete spin variables equal to +hi2 and 
P is an arbitrary permutation, and ( - 1 )  P refers to the sign of the 
permutation. For the above Hamiltonian, which does not flip spins, it is 
permissible to fix the spin variables and impose antisymmetry only with 
respect to interchanges between coordinates of electrons with the same 
spin. That is, spatial antisymmetry is only required for permutations that 
satisfy 

P X  = S (6) 

Spatial antisymmetry only applies to electrons of the same spin. The 
z component of the spin angular momentum is thus fixed to be 
( h / 2 ) ( N , - N ; ) .  I will always assume Eq. (6) holds. Factoring the wave 
function like this can complicate the analysis of rotational symmetry, but 
is not known to cause problems in extended many-body systems. Let me 
also introduce the antisymmetrization projection operator: 

N f ( R ) = ~ f ( P R )  (7) 

where N e = N T ! N 1 ! is the total number of allowed permutations. 
The node of the wave function, ~b(R), in the set of points where 

r = 0. In the absence of a magnetic field, the wave function can be 
assumed to be real, since both the real and imaginary parts of the wave 
function separately satisfy the SchrSdinger equation. If the ground state is 
nondegenerate, then the two parts must be proportional to each other, so 
their nodes must be at the same location. I will discuss the degenerate case 
below. The total configuration space is a Cartesian manifold of dimension 
dN, where d is the spatial dimensionality, always 1, 2, or 3 in this paper. 
For a real function, a single equation specifies the nodes so they will have 
dimension d n -  1. 

What properties do the nodes have? First of all, the coincidence planes 
r i= r j  are located on the nodes, where rl and rj are two particles with the 
same spin. These are hyperplanes of dimension d N -  d. For electrons in one 
dimension (d=  1), the dimensionality of the coincidence planes equals the 
dimensionality of the nodal planes, so it is at least possible that these 
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special planes exhaust the nodes. That is often the case in one dimension, 
as will be shown below. In one dimension, exchange only occurs by 
particles passing through each other. (15) Since there are N! ways of 
ordering N particles on a line, one sees that there must be at least N! nodal 
regions in one dimension. Periodic boundary conditions reduce this 
number to ( N - 1 ) ! .  In the next section, I will prove that there cannot be 
more, which proves that the nodal surfaces are equivalent to two particles 
occupying the same point, a fact which is well known. In more than one 
dimension these coincidence planes are only a scaffolding through which 
the nodes pass. There is much greater flexibility of the nodal surfaces in 
higher dimensions and they are not usually fixed by general arguments. (14) 

Clearly, the nodes must possess all the symmetries of the ground-state 
wave function, at least in the nondegenerate case. For example, if the 
Hamiltonian is translationally invariant, then the nodes must have transla- 
tional invariance. This is only a d-dimensional restriction on the nodes, so 
it does not greatly constrain them. 

Let me correct a common misconception. I am discussing in this paper 
the nodes of the exact many-body wave function. These are very different 
from the nodes of one-body orbitals. Let us take the Ne atom with ten 
electrons as an example. It has ls, 2s, and 2p fully occupied orbitals. These 
orbitals have various spatial nodes: i.e., the 2s function has a radial node 
and the 2p orbitals have planar nodes going through the origin. These 
nodes have next to nothing to do with the many-body nodes, which are 
a 29-dimensional manifold located in the 30-dimensional space of the 
electron coordinates. 

Consider the rectangle shown in Fig. 1, and assume the potential has 
inverse symmetry about its center: V(r)= V ( - r ) .  States which are antisym- 

Fig. 1. The potential in the rectangle has inversion symmetry about its center, the black dot. 
Shown are two possible nodes for the first odd-parity state. A fixed-node solution solves the 
Schr6dinger equation everywhere, but the gradient of the solution will not match at points 
related bysymmetry,  e.g., the two points shown with arrows. 
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metric about the center are analogous to fermion states. Clearly the center 
is a point (dimension 0) on the nodal line (dimension 1). The curve itself 
has inversion symmetry, so the portion on the right half is related to the 
portion on the left half. The tiling property discussed next implies that 
there are always exactly two nodal regions, no matter how complicated the 
potential is. But without specifying the potential everywhere, I do not 
know how the nodal line will bisect the rectangle. As mentioned earlier, the 
fixed-node method consists of making an ansatz for the nodal line (such as 
the diagonal line shown) and solving the Schr6dinger equation with that 
assumption. It yields an upper bound, but, in general, not the exact solu- 
tion, because the gradient of the solution does not match at points related 
by symmetry, e.g., the two points shown with arrows. 

It may happen that the ground state is degenerate. This implies that 
the nodal surface is arbitrary to some extent. A simple example is two free 
1D particles in periodic boundary conditions (on a circle). For  convenience 
suppose the box has length 2zc. Then the single-particle orbitals are 
proportional to 1, e -ix, and e zx. The two-particle ground state is twofold 
degenerate, since one can occupy either the positive or negative momentum 
state. All the real antisymmetric many-body ground states can be written 
in the form cos(x1 - 0) - cos(x2 - 0) for 0 an arbitrary phase. The nodes of 
the wave function are xl = x2 and xa + x 2 - - 2 0  and are shown in Fig. 2. 
One of the nodes is fixed by symmetry, while the other depends on an 
arbitrary phase. The second node is not translationally invariant. We 
cannot keep translational symmetry and work with real functions for 
degenerate systems. The point xl = x2 = 0 is a critical nodal point where 

• 

• 
1 

Fig. 2. The nodes  of two free 1D part icles  in per iodic  bounda ry  condi t ions  are given by the 
equa t ions  x t  = x2 and  x 1 + x 2 = 20. The poin t  x i  = x2 = 0 is a cri t ical  noda l  point  where the 
two nodes  cross and  the wave function vanishes  quadra t ica l ly .  



Ferrnion Nodes 1243 

the two node cross, necessarily at a right angles (independent of the 
potential)  and the wave function vanishes quadratically. 

Suppose a general energy level is p-fold degenerate. We can always 
pick p - 1  independent  many-body  coordinates (points) and find a linear 
t ransformat ion such that  all the t ransformed wave functions vanish at all 
but  one of those points. Therefore degeneracy always implies some freedom 
in the choice of the nodes. In  the above example, we can specify one point  
on the second node. 

In  a few special cases, (14) such as the 3S 1 triplet ground state of the He 
a tom (ls2s), the nodal  surfaces are determined by the other symmetries of 
the problem. Since it is rotat ionally symmetric, the wave function can be 
expanded in powers of the three interparticle distances: r l ,  r2, and q2- 
Ant isymmetry  then implies that  the sphere r~ = r2 is the exact nodal  set. 

Shown in Fig. 3 is a 2D cross section of the ground-state  wave func- 
tion of 161 free (polarized) fermions in a 2D square box. This system has 
a unique, nondegenerate  g round  state. Naturally,  I cannot  hope to show 
much of the complexity of this 322-dimensional function, so what  I have 

Lll~, , i , luiJ ,  

! 

/ 
Fig. 3. A 2D cross section of the ground-state wave function of 161 free (polarized) fermions 
in a periodic square. All 161 particle positions were sampled using variational Monte Carlo 
from (o(R) z. The filled circle indicates the original position of the first particle. The other 160 
particles are fixed at positions indicated by the open circles, and nodes of the wave function 
as a function of the position of the first particle are plotted. The resolution of the contouring 
program is approximately half of the fine scale shown around the border of the plot. 
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done is to fix 160 particles at a typical (random) position, indicated by the 
open circles, and plotted the nodes of the first particle. In fact, all 161 
particle positions were sampled using variational Monte Carlo from ~b(R) 2. 
The filled circle indicates the original position of the first particle. The 
shortest length scale in the wave function is that of the Fermi wavelength, 
which is rc times the interparticle spacing. Since the nodes pass through the 
positions of the fixed particles, the fermion wave function gives a unique 
procedure for connecting the open circles with lines. By examining the 
picture, one can see that the nodal regions are almost connected in the 
cross section. There are only a few isolated pockets which do not connect 
with the rest of the positive or negative regions. It is not surprising that if 
one allows some of the fixed particles to move, the entire positive or 
negative portion of the wave function is fully connected. I will demonstrate 
later in the paper that free particle systems have maximal nodal cells; there 
is a single positive and negative nodal cell. Another feature that is apparent 
in this cross section are the many places where it appears as if the nodes 
are crossing, or about to cross. These are places where the nodes are 
parallel to this cross section. 

2.1. The Tiling Property 

Define a nodal cell f2(R) around a point R as the set of all points 
which can be reached from R without crossing a node. R is assumed not 
to be on a node: ~b(R) ~ 0. If the potential is reasonable, the ground-state 
nodal cells have the tiling property: any point R' not on the node is related 
by symmetry to a point in (2(R), i.e., there exists a permutation P such that 
R'= PR", where R"~ ~2(R). In other words, Z e  ~2(PR) equals entire space 
minus the nodal set. There is only one type of nodal cell; all other cells are 
simply copies obtained by relabeling the particles. Applied to Figs. 1 and 2, 
this implies that there can be most two nodal regions. The tiling property 
is the generalization to fermions of the theorem that a bosonic ground state 
is nodeless. 

The proof of the tiling property is quite simple and is based on the fact 
that the absolute or bosonir ground state is nodeless and has a lower 
energy than the first excited state. Assume, to the contrary, that the tiling 
property does not hold for the antisymmetric eigenfunction q~(R) with 
energy E. Then Z p  f2(PR) leaves out some nodal cells and there must exist 
two distinct nodal cells g2(R1) and g2(R2) which have a common border 
and are not related to each other by a permutation. In that case one can 
construct a lower energy fermion wave function by eliminating the node 
between the two cells. This will be possible if the potential is local and 
reasonable, meaning that it is not infinite everywhere along the node 



Fermion Nodes 1245 

separating the two cells. Then there will exist another function, ~b', defined 
and positive in f2(RI)uf2(R2) and zero outside, with ~ b ' = E ' ~ b '  and 
lower energy E ' <  E, since eliminating a node always lowers the energy. 
A properly antisymmetric function defined in the whole space is obtained 
by using the antisymmetrization projection operator: ~ '(R)=d~b'(R).  
This extended wave function is strictly positive in f2(R1)ug?(R2), since 
otherwise O(R1) and ~Q(R2) would have been related by a permutation. 
Hence ~'(R) can be normalized and has a variational energy: 

Eo ~< S dR ~'(R) ~ ' ( m  = E ' <  E (8) 
dR II~'(/)l l  2 

Hence, I have constructed an upper bound to the ground-state energy 
lower than that of the starting wave function, which proves that the nodes 
of if(R) could not have corresponded to the ground-state nodes. 

Pair potentials will always be reasonable in the sense defined above 
since they are only infinite at the coincident planes which are of dimension 
d N -  d and cannot separate two nodal cells for d > 1. A one-body potential 
with some electrons in one box and some electrons in another box and an 
infinite potential between is not reasonable since putting nodes in the space 
between the boxes will not cost energy. One might try to construct the 
following counterexample to the tiling property. Find any antisymmetric 
function without the tiling property. It is the solution to the Schr6dinger 
equation with a potential VZ~b/~. The tiling property implies that either this 
potential is not reasonable because V2~b does not vanish when if(R) does, 
or that there exist lower energy eigenstates than ~b(R). 

There are two implications of the tiling property for fixed-node Monte 
Carlo. First, one should try and prove that one's favorite functions have 
the tiling property. In some cases that is very easy. If the wave function is 
the exact solution to some model problem with a reasonable potential, then 
it will satisfy this condition. For example, wave functions coming from the 
solution to a mean field equation like the local density functional 
approximation are satisfactory. It is possible '(though unlikely) that 
Hartree-Fock solutions will not have the tiling property, since they are 
derived from a nonlocal potential and locality was implicitly used in the 
proof. (For example, nonlocal potentials can be constructed which have as 
a bosonic ground state a wave function with nodes.) Second, for approved 
functions, variational and fixed-node random walks can safely remain 
inside one nodal cell and never have to worry about sampling the other 
side, since phase space is identical on the other side. This property does not 
tell us how many nodal cells there are, but only gives an upper bound of 
Np. 
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The above proof of the tiling property is valid whether or not the 
ground state is degenerate. Thus, all of the states in a degenerate subspace 
will have the tiling property. One can generalize this result for the case 
where there are other discrete symmetries present. Suppose one wants the 
lowest antisymmetric state with odd parity under the inversion operator/~. 
Then the ground state will have the tiling property with respect to the 
combined action of P and/~. 

2.2. Average Distance to the Nodes 

In a high-dimensional space it is difficult to visualize the character of 
the nodes. The momentum distribution n(k) gives a rough feeling for the 
nodal spacing. The single-particle off-diagonal density matrix (2~ is defined 
as 

n(r) = f dR ~*(rl,  r 2 ..... rN) q~(r 1 -+- r, re ..... rN) (9) 

In a variational Monte Carlo calculation, (17) n(r) is computed from Eq. (9) 
by sampling a configuration from ~b(R) 2, then displacing a single particle a 
distance r and averaging the ratio of the wave function at the new position 
to the wave function at the original position: 

F/(r) ~ ~ ~(r 1 -~_r, r2,..- rN);  
\ ~(rl,r2,..., ru) / 

(10) 

The Fourier transform of the single, particle density matrix gives the 
momentum distribution: 

1 
n~ - (2~) 3 f dr e - ' k r n ( r )  (11) 

For free particles, the momentum distribution is a step function with only 
momentum states less than the Fermi wave vector kv filled. Then Eq. (11) 
implies that the single-particle density matrix n(r) is a Bessel function 
(kvr)d/2Jd/z(kvr), where d is the dimensionality. This function oscillates 
with its first zero occurring at kvr = (3.14, 3.83, 4.49) in one, two, and three 
dimensions, respectively. The value of this zero tells us when on the average 
a displaced particle is as likely to be on one side of the node as the other. 
The averaging is with respect to the full wave function. The fact that this 
function becomes positive at larger r means that there is a long-range 
periodicity in the free particle nodes. The single-particle density matrix 
decays algebraically like r (d+ 1)/2 in any system that has a discontinuity at 
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some value of momentum. Thus, the long-range nodal structure has some- 
thing to do with physical observables. Consider averaging the square of the 
ratio of the displaced wave function in Eq. (10). One finds 

k r  A / = 1 (12) 

It is the sign of the wave function which causes n(r) to decay, not its 
magnitude. 

If two particles are displaced in Eq. (9), that defines the two-particle 
off-diagonal density matrix and its Fourier transform is the two-particle 
momentum distribution. This distribution is related to Cooper pairs and 
superconductivity. Liquid helium is a good example of how displacing two 
electrons can give quite different results than moving one. If a whole He 
atom is displaced in such a way that it does not overlap with other atoms, 
no nodes are crossed and the wave function appears bosonlike. 

2.3. Cr i t ica l  Po in ts  on t h e  Nodal  Sur face  

A nodal surface is locally a hyperplane almost everywhere. However, 
it is possible for nodal surfaces to intersect. A little though about how one 
would define node crossing in a high-dimensional space shows that 
crossing will occur at critical points R where one has both r  0 and 
V~b(R) = 0. These are saddle points on the nodes. It is possible, of course, 
that there are no such critical points, since the definition encompasses 
d N +  1 conditions. 

Let us do a Taylor expansion of ~b(R) about a critical point R, 
assuming the potential is finite nearby and that the second derivative 
matrix, the Hessian, does not vanish. The Laplacian of r must vanish 
at R since r is a solution of Schr6dinger's equation and the potential is 
finite, which implies that the sum of the eigenvalues of the Hessian matrix 
must vanish. Of the d N  eigenvalues, say there are m > 0 negative eigenvalues 
and 0 < n <~ d N - m  positive eigenvalues. The wave function near R will be 
of the form Z n+mi=l aix2~ and the nodes a conical quadric hypersurface. 

If there are only two nonzero eigenvalues, the positive eigenvalue must 
equal the magnitude of the negative eigenvalue and the nodes will cross" at 
right angles. For three nonzero eigenvalues, the nodal surface will be like 
the familiar light cone in relativity. For  four nonzero eigenvalues the nodal 
surface is either the light cone (three positive eigenvalues and one negative 
one) or a hyperboloid which turns into a cone. 

The dimensionality of the critical nodal point equals the number of 
zero eigenvalues. Some zero eigenvalues can be supplied by translational or 
rotational degrees of freedom. Locally there will always be only two nodal 
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cells coming together at the critical point if rn > 1 and n > 1. If the Hessian 
matrix vanishes, even more complicated situations can arise. In two dimen- 
sions, if the first nonvanishing derivative at the critical point is order n, 
then n nodal lines come together, (19) separated by equal angles of n/n. 

It is easy to find one critical point on the free particle nodal surface. 
Simply place the fermions on a perfect Bravais lattice in periodic boundary 
conditions. I find that the free particle wave function vanishes like ~b(R)= 
( R -  Z)  x, where Z is an exponent roughly proportional to the total number 
of fermions and Z is a perfect lattice; see Fig. 4 for the behavior of the 
exponent versus the number of fermions in a square box. A pair potential 
would normally have a global minimum for some Bravais lattice. Thus, the 
critical point is in precisely the wrong location to minimize the potential 
energy. The precise value of the dimension of the critical point presumably 
depends on the symmetry group for that particular number of particles. A 
practical consequence of the existence of this critical point is that a random 
walk should not be started too near a perfect lattice configuration. 

2.4. Possible Ant isymmetr ic  Functions 

Although I have made little progress in stating exact conditions that 
nodes must obey, there remains the further problem in a fixed-node 
quantum Monte Carlo simulation of determining if a node is crossed for a 
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Fig. 4. The exponent giving the behavior of the particle wave function for N (polarized) 
fermions in a periodic square as the coordinates approach a square lattice. The exponents are 
all integers. In the case where the ground state is degenerate only one of the wave functions 
was checked. 
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given antisymmetrical trial function in a reasonable amount of computer 
time. Here nature and mathematics work to our advantage since it is 
possible to compute the values of determinant in N 3 operations. The 
corresponding function for bosons, a permanent, can only be computed in 
computer time proportional to N!, so it is necessary in simulations of 
bosons to directly sample the permutations. A determinant and a related 
object, a Pfaffian, are all that have been used for a many-fermion simula- 
tion. In this section I will assume that the system is unpolarized, so that the 
number of spin-up electrons equals the number of spin-down electrons: 

I = N  T = N  s (13) 

The simplest and most commonly used many-body wave function is 
the pair-product or Bijl Jastrow-Slater function(2): 

~gl(R)=exp I-i<~j u(r,7)] Flq~,(rJ)[t [] (p, (r) ) ,] (14) 

where u(r) is a pair correlation function and @i(r) is a set of I orbitals. 
[[.--][ indicates the determinant of the matrix. Both the u and ~oi(r) are 
determined variationally or from another theoretical calculation. If the 
orbitals are determined from the exact solution to a local one-body 
problem, then the nodes will have the tiling property. It is evident that the 
factor u(r) will not affect the nodes, since it is real. 

Finding the value of a general determinant takes 13 operations. Free 
particles in one dimension are described by a Vandermonde determinant, 
which requires only 12 operations. In fact, to find the sign in one-dimension 
is even faster (for a local move) since one only need to count the number 
of pair interchanges. There exist wave functions with unusual Fermi surface 
in two and three dimensions which can be done faster than 13 operations, 
but it is not known whether these methods can be made general. Insulating 
systems have orbitals which decay exponentially fast and evaluation of the 
resulting determinant can be speeded up with the use of sparse matrix 
algorithms. 

What general way is there of improving the nodes of the Slater 
determinant? In quantum chemistry it is standard to use an expansion in 
a basis of Slater determinants. The optimal basis to expand is composed of 
eigenfunctions of the single-particle dcensity matrix, the natural orbitals. 
However, an expansion in single-particle functions converges very slowly, 
simply because the number of possible excitations grows exponentially with 
the number of degrees of freedom. If there is a degeneracy or near 
degeneracy in the ground state that is broken by interparticle correlation 
it is very important to keep multiple determinants. In general, however, we 
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want to look for nonperturbative ways to increase the accuracy of the 
nodes. 

One of the successes of recent years has been the understanding of the 
structure of the wave function of a strongly correlated quantum Fermi 
liquid, namely liquid 3He. Good agreement for the total binding energy 
was obtained when backflow effects were put into the Slater determinant (4~ 
in Eq. (11). The original idea was suggested by Feynman and Cohen (12) 
based on conservation of particle current and the variational principle. 
I will sketch a general method of improving wave functions based on 
stochastic averages or path integrals. 

Given any trial function g/n(R ), one can improve it by projecting it 
with the Hamiltonian as in Eq. (1). Define the local energy as E~(R)= 
T,(R)-lJt~Tn(R). If the trial function were exact, the local energy would 
be a constant. Let us define a random walk process by the diffusion and 
drift equation (the Smoluchowski equation): 

d f (R ,  t) N it ~ V[-Vf(R, t)+2f(R, t)Vln(71~(R))] (15) dt 
i = 1  

Then, in terms of this stochastic process one can write (5'18~ the projected 
wave function with a generalized Feynman-Kac formula: 

gln+l(R)=e-~gln=~n(R)texpl-- f]dtEn(R(t))]lDR w (16) 

where ( - . - )oRw means averaging with respect to the stochastic process 
defined in Eq. (15) and beginning (or ending) at the point R. Note that 
antisymmetrization, being linear, will commute with the averaging opera- 
tions, so I will start with the unsymmetrical version of the pair product 
trial function: 

7Jl(R)=exp - ~  u(r•) [I qoi(ri) (17) 
i< j  i = 1  

Then the local energy is 

N 

E l ( R )=  W ( R ) - 2  ~ [2Vilnq~i(ri)ViU+(ViU) 2] (18) 
i = 1  

where W(R) is a sum of one- and two-body functions and U(R) is the total 
pair-correlation factor. In general it is impossible to evaluate analytically 
the averages over the random walk. Here I make a crude approximation 
of correcting the trial function by the local energy itself, but optimize 
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functions that appear in it to partially account for the stochastic averaging. 
Then the improved fermion trial function will have the form 

~t 2 : ~ TI(R) exp[ -~EI (R) ]  

= exp - 
l = 1  

with the new matrix 

Mo = (Pi(rj) exp [Vj In ~o, (r j) .  Vj ~'] (20) 

There are two new terms in 7t2(R); backflow, which is the correction 
inside the determinant and which affects the nodes, and a three-body 
bosonlike correction (22) which does not affect the nodes. Taking the case of 
free particles in periodic boundary conditions where the single-particle 
orbitals are plane waves exp(ik, r), we see that instead of working with 
the bare coordinates ri, one should consider the dressed "quasiparticle" 
coordinates: 

xi = r~ + Vi U(R) (21) 

where U'(R) is some effective potential, symmetric with respect to allowed 
permutations, to be optimized. 

This can be considered as a general procedure of mapping from real 
coordinates to some kind of quasiparticle coordinates, then using a simple 
one-body wave function of the quasiparticle coordinates. It is not known 
whether the exact wave function can be written in this form for a 
reasonable U and what are the conditions that it must satisfy to give the 
tiling property. 

Another kind of antisymmetric function is derived from BCS theory 
for singlet pairing or equivalently by multiplying the two matrices in 
Eq. (14) together: 

where I have assumed the system has the same number of up and down 
electrons, and z(r, s) is the symmetric s-like pairing function: 

I 

zs(r, s )=  ~ q)i(r) q)~(s) (23) 
i ~ l  

Recently (s) a generalization of the BCS-type function for triplet pairing 
has been proposed. A Pfaffian is defined (13) as the antisymmetric product 
of pair functions: 

(1! )  2 
P(rl ,  r2 ..... rN) =--~7-- a~ H Zp(r2/, r2~_ 1) (24) 

i = 1  
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where )~p(r, S) is an antisymmetric pairing function and electrons I through 
I are up and I +  1 through N are down. It is not obvious that this function 
will be computable, because the effect of the antisymmetrization is to 
generate an exponential number of terms. However, the square of a Pfaffian 
is 

P(R) 2= [IXp(r), r~)H Ilxp(rJ, r~)lb (25) 

so it is possible to compute the magnitude of a Pfaffian in order 13 opera- 
tions. But fixed-node calculations require the sign as well and there does 
not seem to be a simple way to calculate the sign of the Pfaffian. This is 
not a fundamental problem, since it is not hard to establish whether in a 
given move from R to R' the determinant has vanished in between. One 
simply has to search for the minimum on a given path and show that the 
minimum is not zero. Good wave functions must be smooth to have low 
kinetic energy, so it should be easy to find the minimum. 

3. THE NODES OF THE DENSITY M A T R I X  

3.1. The Fixed-Node F in i te -Temperature  M e t h o d  

The properties of fermion systems at positive temperature are arguably 
even more important than those of the ground state. After all, physical 
systems are constrained to be at nonzero temperature and most phase 
transitions occur at finite temperature. The thermal fermion problem is the 
construction of a polynomial-time algorithm for the computation of the 
exact thermodynamics of a many-fermion system at positive temperature. 
The complexity of the algorithm should be a power of both the size of the 
system and the inverse temperature. I will now describe a generalization of 
the fixed-node method which could solve this problem if only the nodes of 
the fermion density matrix were known. 

At nonzero temperatures one wants to calculate properties with 
respect to the many-body density matrix: 

pv(R, Ro ;/3) = ~ e-~e~r r (26) 

where the sum is over the complete set of antisymmetric eigenfunctions of 
and /~ = 1/kB T. The density matrix can be expanded in terms of path 

integrals to give 

M 

pv(Ro, Ro; f l )=d  f dR~'"dRM ~ I-] P(Ri ~,Ri ; r )  (27) 
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where ~ = filM, the boundary conditions are R M = Ro, and p(Ri 1, Ri; r) 
are distinguishable particle density matrices. For them the sum in Eq. (26) 
is over all eigenfunctions irrespective of symmetry. Antisymmetry is put in 
by the antisymmetric projection operator, which allows the paths to close 
on themselves as RM = PRo, where P is a permutation, and a sign ( - 1 ) e  
is associated with this walk. The density matrix is expanded into a path 
since accurate expressions exist for the density matrix as r becomes small. 
But at low temperature, the straightforward use of Eq. (27) to simulate a 
fermion system becomes exponentially inefficient because the contribution 
from positive permutations approximately equals the contribution from 
negative permutations. Thus, a fermion estimator becomes exponentially 
small with respect to the noise. The computer time needed to achieve a 
given accuracy on a fermion observable will be exponential in the number 
of electrons and in fl = 1/kB T. 

Let us reformulate antisymmetry in terms of a boundary condition. 
The fermion density matrix can also be defined as the solution to the Bloch 
equation 

dpv(R, Ro; fl) 
- - ~ p ~ ( R ,  Ro;/~) (28) d~ 

with the initial conditions 

pF(R, Ro; 0) = ~ r  Ro) (29) 

In what follows I will denote the second argument of the density matrix R o 
as the reference point and the set of points {Rt} for which there exists a 
continuous "space-time" path with pv(R,,, Ro; t') > 0  for 0 ~< t' ~ t the reach 
of R 0, or ~(Ro, t). 

Suppose that the reach is known in advance. It is a simple matter (see 
Appendix C) to show that the problematical initial condition, Eq. (29), can 
be replaced by a zero boundary condition on the surface of the reach. It 
follows because the fermion density matrix is a unique solution to the 
Bloch equation (28) with the zero boundary conditions. 

Now, one can find a path integral solution without the minus signs. 
One simply restricts the paths in Eq. (27) to lie in /~(R0, t). I will call these 
the fixed-node paths. If one averages over the distribution of reference 
points, one can obtain all diagonal fermion observables. Hence the nodes 
of pv(R, Ro; t) are of great interest. I f  I could compute the sign of the fer- 
mion density matrix in polynomial time, the thermal fermion simulation 
problem would be solved. The fixed-node path integral Monte Carlo method 
consists in using the nodes of a good estimate of pF(R, Ro; t), called the 
trial density matrix, to restrict the paths. If its nodes are substantially 

822/63/5-6-29 
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correct, the method can calculate exact thermodynamics of the fermion 
system at any temperature. 

Again let me warn the reader that the nodes of the density matrix are 
quite different from excited-state nodes of the Schr6dinger equation. It is 
thought that the nodes in highly excited states are very complicated, 
especially when the corresponding classical system is chaotic. But in ther- 
mal equilibrium, it is precisely in the high-temperature (classical) limit that 
things simplify. 

The nodes of the fermion density matrix are somewhat more com- 
plicated than those of the ground-state wave function, since pF(Rt, Ro; t) 
depends on 2dN + 1 variables. In what follows I will usually take R 0 and 
t to be fixed. With these variables fixed, the nodes are a d N - 1  manifold 
in a dN-dimensional space, just as in the ground state, and I can speak of 
nodal cells. Note that the density matrix is always real, and, in contrast to 
the wave function, it is always uniquely defined. At large times the nodes 
will converge to the ground-state nodes if the ground state is non- 
degenerate. 

The density matrix has the following general symmetry properties: 

PF(R, Ro; t) = pF(Ro, R; t) -~- (-- 1)PpF(PR, Ro; t) (30) 

The coincidence planes r i = r j  are on the nodes for all Ro and t. The 
reference point itself is not a node, since 

pv(Ro, Ro; t ) > 0  (31) 

unless all wave functions vanish at Ro. I will always assume the potential 
at the reference point is finite and the reference point is not a coincidence 
plane or on a ground-state node. We have translation invariance only if both 
R and Ro are simultaneously translated, because of the initial conditions of 
Eq. (29). 

Define a nodal cell ~(R, Ro, t) as the set of points {R1 } that can be 
reached from R by a path at constant Ro and t with a nonvanishing density 
matrix. If the ground state is nondegenerate, this will reduce to our 
previous definition at low temperature (t large). We have previously 
defined the reach, Y(Ro, t). Let me repeat the distinction between a nodal 
cell and the reach. Nocal cells are connected by nonzero paths at a fixed 
time, while the reach is defined as those points R connected to the reference 
point by a positive path beginning at (Ro, 0) and ending at (R, t). The 
reach is the relevant domain for fixed-node paths at finite temperature. One 
of the interesting open questions is the condition that these two domains 
be equal. 

Clearly R o t  Y(Ro, t), since the trivial path R , = R o  has a positive 
density matrix. Also, (2(Ro, Ro, t ) c  Y(Ro, t). It is shown in Appendix C 



Ferrnion Nodes 1255 

that the reach has the tiling property for all t. That is, every point with a 
nonzero value of the fermion density matrix can be reached by a strictly 
positive or strictly negative path starting from one of the copies of the 
reference point. 

A volume, such as the nodal cell or the reach, is said to be maximal 
if it bisects all space. All the positive regions are then interconnected. 
Symmetry implies the negative regions would also be interconnected. The 
argument in Appendix C implies that if the reach is maximal for some 
time t, it is maximal at all larger times. 

3.2. The Free Particle Fermion Density Matr ix 

The free particle density matrix has the form 

po(R, Ro;t)=(4~z2t) dN/2 exp [  (ri--rj~ J (32) 

assuming the boundaries are far away. Explicit forms for alternative 
boundary conditions or for free particles in an external potential will 
have the Gaussians replaced with the appropriate single-particle density 
matrices. 

Then the nodal surface for two free particles in an infinite spaces is 
given by the hyperplane 

(rl - r2)" ( r i o -  r2o) = 0 (33)  

The FN path must stay in a half-plane (in relative coordinates) defined by 
tffe reference point Ro as shown in Fig. 5, independent of the temperature. 

"\\\ 
\ 

\ 

Fig. 5. The phase space allowed for paths of two free particles. Plotted is the path in relative 
coordinates. The large open circle is the reference point. The large filled circle is the coincident 
plane. The fixed-node path must keep to the left of the indicated line as given by Eq. (33). 
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Since there is a degeneracy in the ground state with periodic boundary con- 
ditions, the nodal surface always depends on Ro as well as R. Rotational 
symmetry is restored only by averaging with respect to the reference point. 

The situation for three free particles is more complex, since it is 
possible for them to rotate without crossing a node. For example, if the 
reference point consists of an equilateral triangle, a rotation about the 
center of the triangle by an arbitrary angle will not cross a node. It is 
shown in Appendix A that if the reference point is an acute triangle (all 
three angles less than 90 ~ the rotation will never cross a node in the high- 
temperature limit. 

See Figs. 6 and 7 for a cross section of the nodes of the free particle 
density matrix for 161 particles in two dimensions at a temperature range 
of 2.5 ~< T/Ev <~ 10 (Fig. 6) and 0.04 ~< T/EF ~ 0.025 (Fig. 7). Here Ev is the 
Fermi energy and equals 4rc2p, where p = n/A is the particle density. The 
ground state is nondegenerate and has an excitation energy to the first 
excited state of 0.039EF. Figure 6 is well into the classical regime, while 
Fig. 7 is approaching, but has not reached the ground-state contours of 
Fig. 2. The reference point in this figure coincides with the cross section of 
the ground-state wave function of Fig. 2. At the smallest value of/~ one can 
quite clearly see the approach to the limiting, piecewise linear form of the 

Fig. 6. The reference point and symbols are identical to Fig. 2. These are contours of the 
nodes of the free particle density matrix for 2.5 ~< T/EF <~ 10, where EF is the Fermi energy. 
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Fig. 7. The reference point and symbols are identical to Fig. 2. These are contours of the 
nodes of the free particle density matrix at 0.04 ~< T/Ev <~ 0.25. The energy of the first excited 
state is 0.039EF above the ground state, so these nodes are approaching those of Fig. 2. 

nodes to be discussed below. Even with the pinning of the coincident 
planes the nodes evolve substantially in going from high to low 
temperature. 

3.3. The Classical  L imi t  

The nodes of the density matrix have an especially simple form in the 
high-temperature limit regardless of the potential. First define a permuta- 
tional cell d~(Ro) as the set of all points closer to PR o than to any other 
P'R  o. These are Voronoi, Dirichlet, or Wigner-Seitz polyhedra--convex 
polyhedra bounded by hyperplanes R .  ( P R o - P ' R o ) =  0. Note that there 
are exactly N e of these cells and that all are essentially the same. 

Their relationship to the free particle nodal cells is easy to derive at 
high temperature. Expand the free particle determinant of Eq. (32) in terms 
of permutations. For  a point R inside the region Ae(Ro) , the permutation 
P will dominate the expansion as t goes to zero, since, by definition, the 
distance to PRo is smallest, and all the other terms are exponentially 
damped relative to it. Thus, pv(R, Ro; 0) will have the sign of P inside 
Ap(Ro). The nodal cells of pv(R, Ro; 0) consist of the permutational cells 
zip(R0) with the following important  modification. If two permutational 
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cells with the same sign share a common face, then there is no node 
separating them and those two permutational cells belong to the same 
nodal cell. If the same-sign nodal cells share enough interfaces, then the 
positive nodal cells can percolate through the entire positive volume and 
the nodal cells will be maximal. 

Let us now show that the nodes for any system with a bounded 
potential reduce to free particle nodes in the high-temperature limit. The 
Feynman-Kac (1~ formula for the density matrix is 

pv(R, Ro;fl)=dpo(R, Ro;fl) exp - dt V(R(t)) (34) 

where ( - . . )  means the average over all Brownian paths connecting R with 
Ro, and Po is the free particle (distinguishable-particle) density matrix. Let 
us assume the potential energy is bounded: IV(R)] < g o for all R. (This is 
much stronger than I need.) Then clearly each term in the permutational 
sum implied by d approaches the free particle term. As fl goes to zero, at 
a fixed value of R and Ro, the interacting fermion density matrix will 
approach the free fermion density matrix. Then it is clear that the exponen- 
tial terms for the kinetic energy dominate and for any bounded potential, 
the nodes of the exact interacting density matrix equal the nodes of the free 
particle density matrix as/~ ~ 0. 

In the high-temperature limit, the nodal cell of R 0 is the same as the 
reach of R0, since the definition of the permutational cell does not involve 
t, but only distances: 

(2(Ro, R0, 0 )=  T(Ro, 0) (3s) 

The critical points are places where Vpv(R, Ro; fi) and or(R, R0; fl) 
vanish. Nodal surfaces can only cross at a critical point. Assume the 
density matrix is critical at R* and/~*, and the potential is bounded near 
the critical point. Expanding it in the neighborhood and using Eq. (28) 
gives to lowest order 

pF(R, Ro;f i )~( f l - f l*)Tr(~)+(R-R*)~(R-R*) (36) 

where f is a symmetric tensor of size dN by dN. If ~7 has only positive or 
only negative eigenvalues, the nodal surfaces will be like a finger that ends 
at fl*. Otherwise the critical point describes crossing of nodes with lines 
along the principle axes of ~ which are connected for/3 > ~*, disconnected 
fl < fl*, and vice versa. As the system approaches the ground state, there 
can be no time dependence in the nodes and we recover Tr(~)= 0. 
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3.4. Forms of the Trial Density Mat r ix  

A neon atom is a good example of the sort of problems one encounters 
in constructing a trial density matrix which smoothly goes from the free 
particle form, correct at high temperature, to the spherically symmetric-like 
Hartree Fock nodes. Actually this is easy to treat. Simply solve for the 
single-particle density matrix in the "self-consistent" field of the nucleus and 
the other nine electrons, Veff(r ). Then the equation for the one-body orbitals 
is 

de(r ,  r0; t) [ - ~ V  2 +/Jeff(r)]  r  ro; t) (37) 
dt 

with boundary condition 

~b(r, ro; 0) = 83(r - r0) (38) 

The trial density matrix should also contain interactions between electrons, 
similar to the pair-product term in ground-state trial functions: 

N 
Pl(R, Ro;t)=exp[-U(R;t)-U(Ro;t)]d 1-] ~b(ri, r,o; t) (39) 

i=1 

Clearly for yell=0 this gives the free particle nodes and will go over 
to the Hartree-Fock-like trial function at low temperature. The anti- 
symmetrization converts the product into a determinant as in Eq. (32). 
Numerically it will be essential to keep the various orbitals orthogonal at 
low temperature. 

One can include backflow effects in several different ways and it is not 
yet clear which is superior. First of all, one can use the local-energy method 
described in Section 2.4 to find corrections to the above density matrix: 

N 
p~(R, R0; t )=  e x p [ - U ( R ;  t ) -  U(R0; t ) ] d  [ I  r  F,, rzo + Fio; t) (40) 

i=l  

where Fi ~ (t22/2) V~ V(R) is proportional to the classical force. This will be 
correct at small t. 

To motivate another form, think of the density matrix that would be 
needed in a hydrogen plasma, with fast-moving electrons and slow-moving, 
but not static, protons. Then one might wish to use an instantaneous 
effective potential such as 

1 N 
v~ff(r; R, Ro) = ~ ,~1= •(r - ri) + ~i(r - rio) (41) 
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where ~(r) is some smeared-out potential function. The mass of the electron 
appearing in Eq. (37) (inside 2) should become a temperature-dependent 
effective mass. If the effective potential becomes attractive between unlike 
spins, in principle, one could obtain S-wave BCS functions at low 
temperatures. 

4. THE M A X I M A L  PROPERTY OF FREE PARTICLE N O D A L  
CELLS 

In this section I show that the free particle density matrix breaks the 
configuration space into a single positive and negative region. I examined 
all free particle systems in two and three dimensions in a periodic square 
or cube for N~< 200. In all cases I have proven with a computer construc- 
tion of paths that those free particle node cells are maximal. I have not 
shown that arbitrary fermion systems are maximal, though the high-tem- 
perature results prove that the reach of most systems is likely maximal. 

To find an upper bound to the number of nodal cells, I first pick a 
reference point Ro. For simplicity assume the density matrix or wave 
function is positive there. Then I examine the straight-line (constant-time) 
path connecting Ro to PijkRo to find whether the global minimum along 
this path is negative. At high temperature I know that the straight-line path 
is optimal, but at low temperatures (or in the ground state) one may wish 
to deform the path to find a strictly positive path. Since density matrices 
and (wave functions) are relatively smooth (otherwise they would have 
high kinetic energy), it is not computationally difficult to find the mini- 
mum. If I do find a positive minimum, the three electrons (/jk) are then 
said to be connected and assigned to the same cluster. When all nearest 
neighbor triangles have been examined, the resulting clusters (containing 
nl, n2 ..... nc particles each) give us an upper bound 2CN!/(nl !  n2! ..~ n c !) to 
the number of nodal cells. 

If there is only one cluster containing all the up electrons and a cluster 
containing all the down electrons, then this proves the nodal cells are 
maximal. The tiling property guarantees that the bound is independent of 
the choice of reference point. However, for some reference points, the paths 
will be easier to locate and the resulting upper bound lower. The algorithm 
will give the exact number of nodal cells only if all even permutations and 
all deformations of the paths are examined. Since each point along the path 
takes order N 2 operations to perform and there are O ( N )  nearest neighbor 
triangles to examine, the algorithm is order N 3. 

I have numerically computed the nodes for two types of systems, free 
particles in a two- or three-dimensional box, and particles in a filled band 
of a periodic potential. In all cases only a single cluster was found. Thus the 
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Fig. 8. Allowed fixed-node triplet permutations in the high-temperature limit for the 
reference point of Fig. 2. Particles may be connected also by the periodic boundary conditions 
which are given by the inner square. All the triangles form a single cluster and the nodal cell 
for 161 particles in a square is maximal. 

upper-bound algorithm works well. For my choice of R 0, I always found 
many triangles were feasible; see Fig. 8 as an example of the cluster 
construction. In the case of degenerate ground states I only examined a 
single member  of the ground-state manifold. 

The second set of calculations was for 121 particles in an external 
potential given by q [cos (2x)+cos (2y) ] .  I had originally thought that an 
insulator would show radically different nodal patterns than a crystal, but 
I was mistaken and the patterns are rather similar. The low-temperature 
nodal cells are maximal for this insulator. But the many-body wave 
functions for an insulator are exponentially localized. 

5. C O N C L U D I N G  R E M A R K S  

In boson systems it is the presence of macroscopic permutations which 
is responsible for superfluidity (1) and long-range order. It is interesting 
to speculate that the same could hold for fermion systems. Liquid 3He 
becomes superfluid in the temperature range 1-2 inK,  depending on 
density. There are two distinct superfluid phases at zero magnetic field, the 
A and B phases. This transition temperature is three orders of magnitude 
lower than the superfluid transition temperature for liquid 4He (boson). 
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Since the fixed-node method is exact given the correct nodes, this phase 
transition must manifest itself in some way. For example, perhaps the 
transition is similar to the one in 4He where long permutation cycles 
become probable at the transition temperature. Superfluidity would occur 
at a much lower temperature for fermions because of a bottleneck in 
configuration space caused by the nodes of the density matrix. It is not at 
all obvious how the p-wave order parameters (in the A and B phases) 
emerge from this description. 

We are in the process of carrying out simulations of liquid 3He based 
on the fixed-node path integral algorithm. If the turning on of permuta- 
tions is involved in the superfluid transition of fermion liquids, this would 
provide a radically different view of fermion superfluidity and would unify 
the theoretical description of helium liquids. 

As is evident, very little is really known about the exact properties of 
the nodes in fermion systems. Much more work is needed along the lines 
I have tried to sketch in this paper. All the programs described in the text 
are available upon request. The author would appreciate any comments 
and corrections. Email address: ceperley@ncsa.uiuc.edu. 

A P P E N D I X A .  C O N D I T I O N S  FOR CLASSICAL E X C H A N G E  

Here I calculate whether two permutational cells are connected in the 
high-temperature limit in free space, i.e., there are not periodic boundary 
conditions. Let R 0 be the reference point. As discussed in Section 3.3, the 
condition that the nodal cell around Ro be connected to that around PoRo, 
where Po is an even permutation, is that there exists a path from R0 to 
PoRo for which the distance to an even permutation is always smaller than 
the distance to an odd permutation. 

Let us first consider the situation for just three particles. It is clear that 
the above condition reduces to the following: the three even regions will be 
connected iff the following straight-line path always remains closer to an 
even point than to an odd point: 

H2(PoRo- Ro)/I < IlRo + 2(PoRo - R o ) -  PI Roll (A1) 

where 0 < ,i. < 1/2 and Po ranges over the even permutations and P1 ranges 
over the odd permutations. By expanding out the distances, regrouping, 
and taking the worst case of 2 = 1/2, one arrives at the condition 

AI(A 1 - Ao) > 0 (A2) 

where 
Ai = P , R o -  Ro (A3) 
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is a 3N-dimensional vector. For  three particles we only need to check the 
two triplet permutations against the three pair permutations. Without 
loss of generality take Po = (2, 3, 1) and P1 = (2, 1, 3), for which A0= 
(r21,r32, r13 ) and A1=(r21 , --r12,0 ). Applying condition (A2) gives 
r12" r31 > 0 or 0213 < 90 ~ But since the exchange must be stable with respect 
to all three pair exchanges, we find that a three-particle reference point is 
maximal in the high-temperature limit iff  the triangle is acute. 

One can make some progress for more than three particles. Let us 
examine whether the same triplet exchange ever passes closer to a pair 
permutation involving a fourth atom. That is, consider the same even 
permutation P0 = (2, 3, 1, 4), but take the odd permutation P~ = (4, 2, 3, 1). 
Then A 0 = (rzl , r32 , r13 , 0) and A 1 = (r41 , 0,  0,  r i 4  ). Applying condition (A2) 
gives [Irl4- r~J211 < r12/4. This is an equation for a circle lying in half of the 
side of the triangle. Considering the other pair exchanges and the inverse 
triplet exchange P o  ~ will lead to five other circles. Consideration of the 
odd quadruple exchange does not lead to any new restrictions on the 
reference point. Sufficient (and I believe necessary) conditions that the 
point PoR be connected to R is that no other particles lie inside the regions 
bounded by the six circles placed along the sides of the triangle and that 
the triangle be acute. Computationally, I find that these conditions hold in 
the high-temperature limit, but that nonacute exchanges are also possible 
at lower temperatures. 

A P P E N D I X  B. M A X I M A L  NODES A N D  CLUSTERS 

Here I show that if the N particles form a single cluster under a set of 
allowable triple permutations { P~k}, then the nodal cells are maximal. Let 
me review the definitions. 

1. The reference point R 0 and the inverse temperature fl are fixed. 

2. A path R(2) is called allowable if the density matrix remains 
positive throughout the path 

pv(R(2), Ro;/3) > 0  (B1) 

where 0 < 2 < 1. 

3. An allowable triple permutation Pijk is one for which the straight- 
line path from R o to pokR o is allowable: 

R(2) = Ro + 2(pu~Ro - Ro) (B2) 

4. If the permutation Pok is allowable, we say that the particles (i, j )  
are connected. Of course this means also that (i, k) and (k, j )  are 
connected. Connectedness is a binary attribute. 



1264 Ceperley 

5. We say that an N-particle system forms a single cluster if for any 
two particles, there exists a connected path between them. 

6. We say that an N-particle system has maximal nodal cells if for 
any two even permutations P1 and P2 there exists an allowable 
path connecting PtRo with P2R o. 

The proof is by induction on the number M of allowable triangles. For 
M =  1 it is clearly true, since if P123 is allowable, so is PF2~. Now suppose 
that a single cluster implies maximal nodal cells if M or fewer allowable 
permutations are given. Given a system with M + 1 allowable permutations 
forming a single cluster, I must find an allowable path between any two 
even permutations. I will do this by removing one of the permutations. The 
selection of which one to remove is important,  since the wrong choice can 
lead to several clusters. I assert that it is possible to find a permutation P '  
such that if it is removed the remaining set of permutations is either: 

1. A connected cluster of N particles and M permutations. In this 
case I am finished. 

2. A connected cluster with N -  1 particles and M permutations and 
one isolated (nonconnected) particle. 

3. A connected cluster with N - 2  particles and M permutations and 
two isolated (nonconnected) particles. 

That P '  exists is proven by asserting the contrary. Suppose removal of a 
triangle disconnects K > 2 particles. Then one of the resulting clusters must 
contain two or more particles which are connected by a permutation. 
Removal of that permutation will then disconnect fewer than K particles 
unless K~< 2. 

/ \.----- \ 

e) b) c) 

Fig. 9. Schematic of how one can move the labels (1, 2) from an arbitrary position (a) to the 
final positions in (c). The other nodes of the cluster are then unscrambled by the same 
(recursive) procedure on the subcluster obtained by removing the triangle containing (1, 2). 
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To finish the proof I must show how to construct an allowable path 
connecting any two even permutations P1 and P2 in cases 2 and 3 above. 
Case 2 is easy. Simply move the desired label onto the isolated particle with 
the connected path. Now no longer use P ' .  By assumption one can shuffle 
the remaining ( N - 1 ,  M) cluster. Case 3 is a bit more difficult, but a 
sequence of steps, illustrated in Fig. 9, allows the right labels to be placed 
on the two disconnected particles and then P' retired. Then one shuffles the 
remaining labels on the M cluster. 

A P P E N D I X C .  UNIQUENESS OF THE FIXED-NODE SOLUTION 
AND THE TILING PROPERTY OF THE REACH 

Here I give the proof that replacing the initial conditions in all space 
for fl = 0 is equivalent to fixing the boundary conditions on the reach of 
R 0. I need to show that inside this domain the exact fermion density matrix 
is the unique solution. The first point, that the exact fermion density matrix 
satisfies the boundary conditions, is obvious. Second, I need to show that 
the boundary conditions uniquely determine the solution. 

First, suppose I have a function 6(R, t) satisfying the Bloch equation: 

( ~  + d/dt) ~(R, t) = 0 (C1) 

in some space-time domain, vanishing at the edges of the domain and at 
time tl : 

6(R, t l ) = 0  (C2) 

Consider the following integral: 

~12dt ~ dR e2V~ t)(~ + d/dt)(~(R, t)=0 (C3) 

where the spatial integral is over the domain and V0 is a lower bound to 
the potential: Vo < V(R). The time integral of the term involving d/dt can 
be performed and using Green's identity and the boundary conditions on 
the surface of the domain for the kinetic energy term, we arrive at 

e2V~ f dR 6(R, t2)2+ f'2dt e2Vot ~ dR [ ( V ( R ) -  Vo)c~(R, t)2+ )~(V(~) 2 ] 
2 d t l  ,J 

= 0  

(C4) 

Note that each term is nonnegative, so that 6(R, t )=  0 for all points in the 
domain and for tl ~< t ~< t2. 
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We now follow the usual procedure of hypothesizing two solutions 
and showing that they must be the same. Let Pl and P2 be two solutions 
to the fixed-node problem and let 6 = p ~ - p 2 .  Then 6 ( R , t ) = 0  for 
t~ ~< t~< t2. By taking t2 to infinity and tl to zero, we conclude that the 
exact fermion density matrix is the unique solution. 

Equation (C4) also shows that the reach has the tiling property. Sup- 
pose that it did not. Then there would exist a space-time domain with the 
density matrix nonzero inside and from which no paths exist to a reference 
point R0 or any of its images P R o  without crossing the nodes of the density 
matrix. But, such a domain cannot extend to t - -0 ,  since in the classical 
limit one has the tiling property. Then this domain satisfies the conditions 
(C2) for some t ~ > 0  and must vanish completely inside the domain, 
contradicting the original assumption. 
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